Copied to
clipboard

G = C2×C22⋊Dic14order 448 = 26·7

Direct product of C2 and C22⋊Dic14

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C22⋊Dic14, C233Dic14, C24.51D14, (C22×C14)⋊4Q8, C141(C22⋊Q8), C14.5(C22×Q8), (C2×C14).25C24, C4⋊Dic749C22, C22⋊C4.84D14, Dic7.41(C2×D4), C222(C2×Dic14), C22.122(D4×D7), C14.32(C22×D4), (C2×C28).125C23, Dic7⋊C446C22, (C2×Dic7).189D4, (C22×Dic14)⋊5C2, (C22×C4).167D14, (C23×Dic7).8C2, C2.7(C22×Dic14), C22.67(C23×D7), (C2×Dic14)⋊47C22, (C23×C14).51C22, (C22×C28).70C22, C23.318(C22×D7), C23.D7.83C22, C22.64(D42D7), (C22×C14).117C23, (C2×Dic7).175C23, (C22×Dic7).202C22, C2.7(C2×D4×D7), C71(C2×C22⋊Q8), (C2×C14)⋊4(C2×Q8), (C2×C4⋊Dic7)⋊17C2, C14.66(C2×C4○D4), C2.7(C2×D42D7), (C2×Dic7⋊C4)⋊21C2, (C2×C14).378(C2×D4), (C2×C22⋊C4).16D7, (C14×C22⋊C4).17C2, (C2×C4).132(C22×D7), (C2×C23.D7).20C2, (C2×C14).166(C4○D4), (C7×C22⋊C4).96C22, SmallGroup(448,934)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C2×C22⋊Dic14
C1C7C14C2×C14C2×Dic7C22×Dic7C23×Dic7 — C2×C22⋊Dic14
C7C2×C14 — C2×C22⋊Dic14
C1C23C2×C22⋊C4

Generators and relations for C2×C22⋊Dic14
 G = < a,b,c,d,e | a2=b2=c2=d28=1, e2=d14, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 1236 in 322 conjugacy classes, 135 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, Q8, C23, C23, C23, C14, C14, C14, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic7, Dic7, C28, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×Q8, Dic14, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C2×C22⋊Q8, Dic7⋊C4, C4⋊Dic7, C23.D7, C7×C22⋊C4, C2×Dic14, C2×Dic14, C22×Dic7, C22×Dic7, C22×Dic7, C22×C28, C23×C14, C22⋊Dic14, C2×Dic7⋊C4, C2×C4⋊Dic7, C2×C23.D7, C14×C22⋊C4, C22×Dic14, C23×Dic7, C2×C22⋊Dic14
Quotients: C1, C2, C22, D4, Q8, C23, D7, C2×D4, C2×Q8, C4○D4, C24, D14, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, Dic14, C22×D7, C2×C22⋊Q8, C2×Dic14, D4×D7, D42D7, C23×D7, C22⋊Dic14, C22×Dic14, C2×D4×D7, C2×D42D7, C2×C22⋊Dic14

Smallest permutation representation of C2×C22⋊Dic14
On 224 points
Generators in S224
(1 215)(2 216)(3 217)(4 218)(5 219)(6 220)(7 221)(8 222)(9 223)(10 224)(11 197)(12 198)(13 199)(14 200)(15 201)(16 202)(17 203)(18 204)(19 205)(20 206)(21 207)(22 208)(23 209)(24 210)(25 211)(26 212)(27 213)(28 214)(29 112)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(57 191)(58 192)(59 193)(60 194)(61 195)(62 196)(63 169)(64 170)(65 171)(66 172)(67 173)(68 174)(69 175)(70 176)(71 177)(72 178)(73 179)(74 180)(75 181)(76 182)(77 183)(78 184)(79 185)(80 186)(81 187)(82 188)(83 189)(84 190)(113 165)(114 166)(115 167)(116 168)(117 141)(118 142)(119 143)(120 144)(121 145)(122 146)(123 147)(124 148)(125 149)(126 150)(127 151)(128 152)(129 153)(130 154)(131 155)(132 156)(133 157)(134 158)(135 159)(136 160)(137 161)(138 162)(139 163)(140 164)
(1 38)(2 202)(3 40)(4 204)(5 42)(6 206)(7 44)(8 208)(9 46)(10 210)(11 48)(12 212)(13 50)(14 214)(15 52)(16 216)(17 54)(18 218)(19 56)(20 220)(21 30)(22 222)(23 32)(24 224)(25 34)(26 198)(27 36)(28 200)(29 98)(31 100)(33 102)(35 104)(37 106)(39 108)(41 110)(43 112)(45 86)(47 88)(49 90)(51 92)(53 94)(55 96)(57 129)(58 178)(59 131)(60 180)(61 133)(62 182)(63 135)(64 184)(65 137)(66 186)(67 139)(68 188)(69 113)(70 190)(71 115)(72 192)(73 117)(74 194)(75 119)(76 196)(77 121)(78 170)(79 123)(80 172)(81 125)(82 174)(83 127)(84 176)(85 207)(87 209)(89 211)(91 213)(93 215)(95 217)(97 219)(99 221)(101 223)(103 197)(105 199)(107 201)(109 203)(111 205)(114 152)(116 154)(118 156)(120 158)(122 160)(124 162)(126 164)(128 166)(130 168)(132 142)(134 144)(136 146)(138 148)(140 150)(141 179)(143 181)(145 183)(147 185)(149 187)(151 189)(153 191)(155 193)(157 195)(159 169)(161 171)(163 173)(165 175)(167 177)
(1 107)(2 108)(3 109)(4 110)(5 111)(6 112)(7 85)(8 86)(9 87)(10 88)(11 89)(12 90)(13 91)(14 92)(15 93)(16 94)(17 95)(18 96)(19 97)(20 98)(21 99)(22 100)(23 101)(24 102)(25 103)(26 104)(27 105)(28 106)(29 220)(30 221)(31 222)(32 223)(33 224)(34 197)(35 198)(36 199)(37 200)(38 201)(39 202)(40 203)(41 204)(42 205)(43 206)(44 207)(45 208)(46 209)(47 210)(48 211)(49 212)(50 213)(51 214)(52 215)(53 216)(54 217)(55 218)(56 219)(57 167)(58 168)(59 141)(60 142)(61 143)(62 144)(63 145)(64 146)(65 147)(66 148)(67 149)(68 150)(69 151)(70 152)(71 153)(72 154)(73 155)(74 156)(75 157)(76 158)(77 159)(78 160)(79 161)(80 162)(81 163)(82 164)(83 165)(84 166)(113 189)(114 190)(115 191)(116 192)(117 193)(118 194)(119 195)(120 196)(121 169)(122 170)(123 171)(124 172)(125 173)(126 174)(127 175)(128 176)(129 177)(130 178)(131 179)(132 180)(133 181)(134 182)(135 183)(136 184)(137 185)(138 186)(139 187)(140 188)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 81 15 67)(2 80 16 66)(3 79 17 65)(4 78 18 64)(5 77 19 63)(6 76 20 62)(7 75 21 61)(8 74 22 60)(9 73 23 59)(10 72 24 58)(11 71 25 57)(12 70 26 84)(13 69 27 83)(14 68 28 82)(29 134 43 120)(30 133 44 119)(31 132 45 118)(32 131 46 117)(33 130 47 116)(34 129 48 115)(35 128 49 114)(36 127 50 113)(37 126 51 140)(38 125 52 139)(39 124 53 138)(40 123 54 137)(41 122 55 136)(42 121 56 135)(85 157 99 143)(86 156 100 142)(87 155 101 141)(88 154 102 168)(89 153 103 167)(90 152 104 166)(91 151 105 165)(92 150 106 164)(93 149 107 163)(94 148 108 162)(95 147 109 161)(96 146 110 160)(97 145 111 159)(98 144 112 158)(169 219 183 205)(170 218 184 204)(171 217 185 203)(172 216 186 202)(173 215 187 201)(174 214 188 200)(175 213 189 199)(176 212 190 198)(177 211 191 197)(178 210 192 224)(179 209 193 223)(180 208 194 222)(181 207 195 221)(182 206 196 220)

G:=sub<Sym(224)| (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,221)(8,222)(9,223)(10,224)(11,197)(12,198)(13,199)(14,200)(15,201)(16,202)(17,203)(18,204)(19,205)(20,206)(21,207)(22,208)(23,209)(24,210)(25,211)(26,212)(27,213)(28,214)(29,112)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,191)(58,192)(59,193)(60,194)(61,195)(62,196)(63,169)(64,170)(65,171)(66,172)(67,173)(68,174)(69,175)(70,176)(71,177)(72,178)(73,179)(74,180)(75,181)(76,182)(77,183)(78,184)(79,185)(80,186)(81,187)(82,188)(83,189)(84,190)(113,165)(114,166)(115,167)(116,168)(117,141)(118,142)(119,143)(120,144)(121,145)(122,146)(123,147)(124,148)(125,149)(126,150)(127,151)(128,152)(129,153)(130,154)(131,155)(132,156)(133,157)(134,158)(135,159)(136,160)(137,161)(138,162)(139,163)(140,164), (1,38)(2,202)(3,40)(4,204)(5,42)(6,206)(7,44)(8,208)(9,46)(10,210)(11,48)(12,212)(13,50)(14,214)(15,52)(16,216)(17,54)(18,218)(19,56)(20,220)(21,30)(22,222)(23,32)(24,224)(25,34)(26,198)(27,36)(28,200)(29,98)(31,100)(33,102)(35,104)(37,106)(39,108)(41,110)(43,112)(45,86)(47,88)(49,90)(51,92)(53,94)(55,96)(57,129)(58,178)(59,131)(60,180)(61,133)(62,182)(63,135)(64,184)(65,137)(66,186)(67,139)(68,188)(69,113)(70,190)(71,115)(72,192)(73,117)(74,194)(75,119)(76,196)(77,121)(78,170)(79,123)(80,172)(81,125)(82,174)(83,127)(84,176)(85,207)(87,209)(89,211)(91,213)(93,215)(95,217)(97,219)(99,221)(101,223)(103,197)(105,199)(107,201)(109,203)(111,205)(114,152)(116,154)(118,156)(120,158)(122,160)(124,162)(126,164)(128,166)(130,168)(132,142)(134,144)(136,146)(138,148)(140,150)(141,179)(143,181)(145,183)(147,185)(149,187)(151,189)(153,191)(155,193)(157,195)(159,169)(161,171)(163,173)(165,175)(167,177), (1,107)(2,108)(3,109)(4,110)(5,111)(6,112)(7,85)(8,86)(9,87)(10,88)(11,89)(12,90)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,97)(20,98)(21,99)(22,100)(23,101)(24,102)(25,103)(26,104)(27,105)(28,106)(29,220)(30,221)(31,222)(32,223)(33,224)(34,197)(35,198)(36,199)(37,200)(38,201)(39,202)(40,203)(41,204)(42,205)(43,206)(44,207)(45,208)(46,209)(47,210)(48,211)(49,212)(50,213)(51,214)(52,215)(53,216)(54,217)(55,218)(56,219)(57,167)(58,168)(59,141)(60,142)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(113,189)(114,190)(115,191)(116,192)(117,193)(118,194)(119,195)(120,196)(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)(128,176)(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)(136,184)(137,185)(138,186)(139,187)(140,188), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,81,15,67)(2,80,16,66)(3,79,17,65)(4,78,18,64)(5,77,19,63)(6,76,20,62)(7,75,21,61)(8,74,22,60)(9,73,23,59)(10,72,24,58)(11,71,25,57)(12,70,26,84)(13,69,27,83)(14,68,28,82)(29,134,43,120)(30,133,44,119)(31,132,45,118)(32,131,46,117)(33,130,47,116)(34,129,48,115)(35,128,49,114)(36,127,50,113)(37,126,51,140)(38,125,52,139)(39,124,53,138)(40,123,54,137)(41,122,55,136)(42,121,56,135)(85,157,99,143)(86,156,100,142)(87,155,101,141)(88,154,102,168)(89,153,103,167)(90,152,104,166)(91,151,105,165)(92,150,106,164)(93,149,107,163)(94,148,108,162)(95,147,109,161)(96,146,110,160)(97,145,111,159)(98,144,112,158)(169,219,183,205)(170,218,184,204)(171,217,185,203)(172,216,186,202)(173,215,187,201)(174,214,188,200)(175,213,189,199)(176,212,190,198)(177,211,191,197)(178,210,192,224)(179,209,193,223)(180,208,194,222)(181,207,195,221)(182,206,196,220)>;

G:=Group( (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,221)(8,222)(9,223)(10,224)(11,197)(12,198)(13,199)(14,200)(15,201)(16,202)(17,203)(18,204)(19,205)(20,206)(21,207)(22,208)(23,209)(24,210)(25,211)(26,212)(27,213)(28,214)(29,112)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,191)(58,192)(59,193)(60,194)(61,195)(62,196)(63,169)(64,170)(65,171)(66,172)(67,173)(68,174)(69,175)(70,176)(71,177)(72,178)(73,179)(74,180)(75,181)(76,182)(77,183)(78,184)(79,185)(80,186)(81,187)(82,188)(83,189)(84,190)(113,165)(114,166)(115,167)(116,168)(117,141)(118,142)(119,143)(120,144)(121,145)(122,146)(123,147)(124,148)(125,149)(126,150)(127,151)(128,152)(129,153)(130,154)(131,155)(132,156)(133,157)(134,158)(135,159)(136,160)(137,161)(138,162)(139,163)(140,164), (1,38)(2,202)(3,40)(4,204)(5,42)(6,206)(7,44)(8,208)(9,46)(10,210)(11,48)(12,212)(13,50)(14,214)(15,52)(16,216)(17,54)(18,218)(19,56)(20,220)(21,30)(22,222)(23,32)(24,224)(25,34)(26,198)(27,36)(28,200)(29,98)(31,100)(33,102)(35,104)(37,106)(39,108)(41,110)(43,112)(45,86)(47,88)(49,90)(51,92)(53,94)(55,96)(57,129)(58,178)(59,131)(60,180)(61,133)(62,182)(63,135)(64,184)(65,137)(66,186)(67,139)(68,188)(69,113)(70,190)(71,115)(72,192)(73,117)(74,194)(75,119)(76,196)(77,121)(78,170)(79,123)(80,172)(81,125)(82,174)(83,127)(84,176)(85,207)(87,209)(89,211)(91,213)(93,215)(95,217)(97,219)(99,221)(101,223)(103,197)(105,199)(107,201)(109,203)(111,205)(114,152)(116,154)(118,156)(120,158)(122,160)(124,162)(126,164)(128,166)(130,168)(132,142)(134,144)(136,146)(138,148)(140,150)(141,179)(143,181)(145,183)(147,185)(149,187)(151,189)(153,191)(155,193)(157,195)(159,169)(161,171)(163,173)(165,175)(167,177), (1,107)(2,108)(3,109)(4,110)(5,111)(6,112)(7,85)(8,86)(9,87)(10,88)(11,89)(12,90)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,97)(20,98)(21,99)(22,100)(23,101)(24,102)(25,103)(26,104)(27,105)(28,106)(29,220)(30,221)(31,222)(32,223)(33,224)(34,197)(35,198)(36,199)(37,200)(38,201)(39,202)(40,203)(41,204)(42,205)(43,206)(44,207)(45,208)(46,209)(47,210)(48,211)(49,212)(50,213)(51,214)(52,215)(53,216)(54,217)(55,218)(56,219)(57,167)(58,168)(59,141)(60,142)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,161)(80,162)(81,163)(82,164)(83,165)(84,166)(113,189)(114,190)(115,191)(116,192)(117,193)(118,194)(119,195)(120,196)(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)(128,176)(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)(136,184)(137,185)(138,186)(139,187)(140,188), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,81,15,67)(2,80,16,66)(3,79,17,65)(4,78,18,64)(5,77,19,63)(6,76,20,62)(7,75,21,61)(8,74,22,60)(9,73,23,59)(10,72,24,58)(11,71,25,57)(12,70,26,84)(13,69,27,83)(14,68,28,82)(29,134,43,120)(30,133,44,119)(31,132,45,118)(32,131,46,117)(33,130,47,116)(34,129,48,115)(35,128,49,114)(36,127,50,113)(37,126,51,140)(38,125,52,139)(39,124,53,138)(40,123,54,137)(41,122,55,136)(42,121,56,135)(85,157,99,143)(86,156,100,142)(87,155,101,141)(88,154,102,168)(89,153,103,167)(90,152,104,166)(91,151,105,165)(92,150,106,164)(93,149,107,163)(94,148,108,162)(95,147,109,161)(96,146,110,160)(97,145,111,159)(98,144,112,158)(169,219,183,205)(170,218,184,204)(171,217,185,203)(172,216,186,202)(173,215,187,201)(174,214,188,200)(175,213,189,199)(176,212,190,198)(177,211,191,197)(178,210,192,224)(179,209,193,223)(180,208,194,222)(181,207,195,221)(182,206,196,220) );

G=PermutationGroup([[(1,215),(2,216),(3,217),(4,218),(5,219),(6,220),(7,221),(8,222),(9,223),(10,224),(11,197),(12,198),(13,199),(14,200),(15,201),(16,202),(17,203),(18,204),(19,205),(20,206),(21,207),(22,208),(23,209),(24,210),(25,211),(26,212),(27,213),(28,214),(29,112),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(57,191),(58,192),(59,193),(60,194),(61,195),(62,196),(63,169),(64,170),(65,171),(66,172),(67,173),(68,174),(69,175),(70,176),(71,177),(72,178),(73,179),(74,180),(75,181),(76,182),(77,183),(78,184),(79,185),(80,186),(81,187),(82,188),(83,189),(84,190),(113,165),(114,166),(115,167),(116,168),(117,141),(118,142),(119,143),(120,144),(121,145),(122,146),(123,147),(124,148),(125,149),(126,150),(127,151),(128,152),(129,153),(130,154),(131,155),(132,156),(133,157),(134,158),(135,159),(136,160),(137,161),(138,162),(139,163),(140,164)], [(1,38),(2,202),(3,40),(4,204),(5,42),(6,206),(7,44),(8,208),(9,46),(10,210),(11,48),(12,212),(13,50),(14,214),(15,52),(16,216),(17,54),(18,218),(19,56),(20,220),(21,30),(22,222),(23,32),(24,224),(25,34),(26,198),(27,36),(28,200),(29,98),(31,100),(33,102),(35,104),(37,106),(39,108),(41,110),(43,112),(45,86),(47,88),(49,90),(51,92),(53,94),(55,96),(57,129),(58,178),(59,131),(60,180),(61,133),(62,182),(63,135),(64,184),(65,137),(66,186),(67,139),(68,188),(69,113),(70,190),(71,115),(72,192),(73,117),(74,194),(75,119),(76,196),(77,121),(78,170),(79,123),(80,172),(81,125),(82,174),(83,127),(84,176),(85,207),(87,209),(89,211),(91,213),(93,215),(95,217),(97,219),(99,221),(101,223),(103,197),(105,199),(107,201),(109,203),(111,205),(114,152),(116,154),(118,156),(120,158),(122,160),(124,162),(126,164),(128,166),(130,168),(132,142),(134,144),(136,146),(138,148),(140,150),(141,179),(143,181),(145,183),(147,185),(149,187),(151,189),(153,191),(155,193),(157,195),(159,169),(161,171),(163,173),(165,175),(167,177)], [(1,107),(2,108),(3,109),(4,110),(5,111),(6,112),(7,85),(8,86),(9,87),(10,88),(11,89),(12,90),(13,91),(14,92),(15,93),(16,94),(17,95),(18,96),(19,97),(20,98),(21,99),(22,100),(23,101),(24,102),(25,103),(26,104),(27,105),(28,106),(29,220),(30,221),(31,222),(32,223),(33,224),(34,197),(35,198),(36,199),(37,200),(38,201),(39,202),(40,203),(41,204),(42,205),(43,206),(44,207),(45,208),(46,209),(47,210),(48,211),(49,212),(50,213),(51,214),(52,215),(53,216),(54,217),(55,218),(56,219),(57,167),(58,168),(59,141),(60,142),(61,143),(62,144),(63,145),(64,146),(65,147),(66,148),(67,149),(68,150),(69,151),(70,152),(71,153),(72,154),(73,155),(74,156),(75,157),(76,158),(77,159),(78,160),(79,161),(80,162),(81,163),(82,164),(83,165),(84,166),(113,189),(114,190),(115,191),(116,192),(117,193),(118,194),(119,195),(120,196),(121,169),(122,170),(123,171),(124,172),(125,173),(126,174),(127,175),(128,176),(129,177),(130,178),(131,179),(132,180),(133,181),(134,182),(135,183),(136,184),(137,185),(138,186),(139,187),(140,188)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,81,15,67),(2,80,16,66),(3,79,17,65),(4,78,18,64),(5,77,19,63),(6,76,20,62),(7,75,21,61),(8,74,22,60),(9,73,23,59),(10,72,24,58),(11,71,25,57),(12,70,26,84),(13,69,27,83),(14,68,28,82),(29,134,43,120),(30,133,44,119),(31,132,45,118),(32,131,46,117),(33,130,47,116),(34,129,48,115),(35,128,49,114),(36,127,50,113),(37,126,51,140),(38,125,52,139),(39,124,53,138),(40,123,54,137),(41,122,55,136),(42,121,56,135),(85,157,99,143),(86,156,100,142),(87,155,101,141),(88,154,102,168),(89,153,103,167),(90,152,104,166),(91,151,105,165),(92,150,106,164),(93,149,107,163),(94,148,108,162),(95,147,109,161),(96,146,110,160),(97,145,111,159),(98,144,112,158),(169,219,183,205),(170,218,184,204),(171,217,185,203),(172,216,186,202),(173,215,187,201),(174,214,188,200),(175,213,189,199),(176,212,190,198),(177,211,191,197),(178,210,192,224),(179,209,193,223),(180,208,194,222),(181,207,195,221),(182,206,196,220)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P7A7B7C14A···14U14V···14AG28A···28X
order12···2222244444···4444477714···1414···1428···28
size11···12222444414···14282828282222···24···44···4

88 irreducible representations

dim111111112222222244
type+++++++++-++++-+-
imageC1C2C2C2C2C2C2C2D4Q8D7C4○D4D14D14D14Dic14D4×D7D42D7
kernelC2×C22⋊Dic14C22⋊Dic14C2×Dic7⋊C4C2×C4⋊Dic7C2×C23.D7C14×C22⋊C4C22×Dic14C23×Dic7C2×Dic7C22×C14C2×C22⋊C4C2×C14C22⋊C4C22×C4C24C23C22C22
# reps18211111443412632466

Matrix representation of C2×C22⋊Dic14 in GL5(𝔽29)

280000
028000
002800
000280
000028
,
10000
01000
00100
000280
000171
,
10000
01000
00100
000280
000028
,
280000
042100
08600
000124
0001228
,
10000
032500
0172600
000170
000112

G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,17,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[28,0,0,0,0,0,4,8,0,0,0,21,6,0,0,0,0,0,1,12,0,0,0,24,28],[1,0,0,0,0,0,3,17,0,0,0,25,26,0,0,0,0,0,17,1,0,0,0,0,12] >;

C2×C22⋊Dic14 in GAP, Magma, Sage, TeX

C_2\times C_2^2\rtimes {\rm Dic}_{14}
% in TeX

G:=Group("C2xC2^2:Dic14");
// GroupNames label

G:=SmallGroup(448,934);
// by ID

G=gap.SmallGroup(448,934);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,675,297,80,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=1,e^2=d^14,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽